医学互联网是最近在医学方面的技术进步,对提供对健康指标的实时监控非常有帮助。本文提出了一种无创的物联网系统,该系统跟踪患者的情绪,尤其是患有自闭症谱系障碍的情绪。通过一些负担得起的传感器和云计算服务,对个人的心率进行监测和分析,以研究不同情绪每分钟汗水和心跳的变化的影响。在个人的正常休息条件下,建议的系统可以使用机器学习算法检测正确的情绪,其精度最高为92%。拟议方法的结果与医学物联网中最先进的解决方案相当。
translated by 谷歌翻译
随着移动设备和基于位置的服务越来越多地在不同的智能城市场景和应用程序中开发,由于数据收集和共享,许多意外的隐私泄漏已经出现。当与云辅助应用程序共享地理位置数据时,用户重新识别和其他敏感的推论是主要的隐私威胁。值得注意的是,四个时空点足以唯一地识别95%的个人,这加剧了个人信息泄漏。为了解决诸如用户重新识别之类的恶意目的,我们提出了一种基于LSTM的对抗机制,具有代表性学习,以实现原始地理位置数据(即移动性数据)的隐私权特征表示,以共享目的。这些表示旨在以最小的公用事业预算(即损失)最大程度地减少用户重新识别和完整数据重建的机会。我们通过量化轨迹重建风险,用户重新识别风险和移动性可预测性来量化移动性数据集的隐私性权衡权衡来训练该机制。我们报告了探索性分析,使用户能够通过特定的损失功能及其权重参数评估此权衡。四个代表性移动数据集的广泛比较结果证明了我们提出的在移动性隐私保护方面的架构的优越性以及提议的隐私权提取器提取器的效率。我们表明,流动痕迹的隐私能够以边际移动公用事业为代价获得体面的保护。我们的结果还表明,通过探索帕累托最佳设置,我们可以同时增加隐私(45%)和实用程序(32%)。
translated by 谷歌翻译
在本文中,研究了无线网络的联合学习(FL)。在每个通信回合中,选择一部分设备以有限的时间和能量参与聚合。为了最大程度地减少收敛时间,在基于Stackelberg游戏的框架中共同考虑了全球损失和延迟。具体而言,在Leader级别上,将基于信息的设备选择(AOI)选择为全球损失最小化问题,而子渠道分配,计算资源分配和功率分配在追随者级别被视为延迟最小化问题。通过将追随者级别的问题分为两个子问题,追随者的最佳响应是通过基于单调优化的资源分配算法和基于匹配的子渠道分配算法获得的。通过得出收敛速率的上限,重新制定了领导者级别的问题,然后提出了基于列表的设备选择算法来实现Stackelberg平衡。仿真结果表明,所提出的设备选择方案在全球损失方面优于其他方案,而开发的算法可以显着降低计算和通信的时间消耗。
translated by 谷歌翻译
车辆到基础设施(V2I)通信中的高效毫米波(MMWAVE)光束选择是由于MMWVEAVE和高用户移动性窄的狭窄但挑战性的任务。为了减少迭代光束发现过程的搜索开销,通过数据驱动的方法利用了从安装在车辆上的光检测和测距(LIDAR)传感器的上下文信息,以产生有用的侧面信息。在本文中,我们提出了一种轻量级神经网络(NN)架构以及相应的LIDAR预处理,这显着优于先前的作品。我们的解决方案包括多个新奇,可提高模型的收敛速度和最终精度。特别是,我们定义了由知识蒸馏理念的启发的新型损失函数,介绍课程训练方法利用视线(LOS)/非视线(NLOS)信息,我们提出非本地注意模块提高了对NLOS案例更具挑战性的性能。基准数据集的仿真结果表明,利用LIDAR数据和接收器位置,我们的NN基光束选择方案可以实现79.9%的遗弃光束扫描方法,无需任何光束搜索开销,通过搜索少至6个梁。在典型的MMWAVE V2I场景中,我们所提出的方法可以显着减少实现所需吞吐量所需的光束搜索时间,与逆指纹和分层光束选择方案相比。
translated by 谷歌翻译
我们对真正低资源语言的神经机翻译(NMT)进行了实证研究,并提出了一个训练课程,适用于缺乏并行培训数据和计算资源的情况,反映了世界上大多数世界语言和研究人员的现实致力于这些语言。以前,已经向低资源语言储存了使用后翻译(BT)和自动编码(AE)任务的无监督NMT。我们证明利用可比的数据和代码切换作为弱监管,与BT和AE目标相结合,即使仅使用适度的计算资源,低资源语言也会显着改进。在这项工作中提出的培训课程实现了Bleu分数,可通过+12.2 Bleu为古吉拉特和+3.7 Bleu为哈萨克斯培训的监督NMT培训,展示了弱势监督的巨大监督态度资源语言。在受到监督数据的培训时,我们的培训课程达到了索马里数据集(索马里29.3的BLEU的最先进的结果)。我们还观察到增加更多时间和GPU来培训可以进一步提高性能,强调报告在MT研究中的报告资源使用的重要性。
translated by 谷歌翻译